ERARCAL ${ }^{\circ}$
 INSTA-MOLD EAR PROTECTORS ATTENUATION TEST REPORT

Report prepared for:	Mr. Terry S. Griffing
	Director, National Sales
	Starkey Laboratories, Inc.
	World Headquarters
	6700 Washington Ave., S.
	Eden Prairie, MN 55344

	Cabot Safety Corporation's $\mathrm{E} * \mathrm{~A} \cdot \mathrm{RCAL}{ }^{\text {sm }}$ Acoustical Laboratory
NVUAD	is accredited by the National Institute of Standards and Technology,
	National Voluntary Laboratory Accreditation Program, for hearing
	protection device attenuation testing per ANSI S3.19-1974 and
	ANSI S12.6-1984.

Manager: Elliott H. Berger, Mem. INCE This report contains 6 pages:

Address:	Cabot Safety Corporation	1) summary test data
7911 Zionsville Road	2) individual subject data	
	Indianapolis, IN $46268-1657$	3) extreme range test
	phone: $317-692-6666$	4) extreme mean value test
	fax: $317-692-3116$	5) computation of the NRR
		6) subject characteristics

For a complete description of the testing procedures involved in generating this report, see the following Cabot Safety Corporation Technical Reports:

$$
\begin{array}{ll}
\text { E-A-R 90-32/HP } & \begin{array}{l}
\text { Manual for Calibration of the Cabot Safety Corporation } \\
\\
\\
\\
\text { E•A A RCAL ANSI Acoustical Laboratory re ANSI S3.12-1984 }
\end{array} \\
\text { E-A-R 91-41/HP } & \begin{array}{l}
\text { Policies and Procedures Manual for the Cabot Safety } \\
\text { Corporation E•A-RCAL Acoustical Laboratory re ANSI }
\end{array} \\
& \text { S3.19-1974 and ANSI S12.6-1984 }
\end{array}
$$

[^0]E*A•RCAL ATTENUATION TEST REPORT
 PER ANSI S3.19-1974

DEVICE:	Insta-Mold Customized Ear Protectors	
DEVICE TYPE:	Custom earmold	
MANUFACTURER:	Insta-Mold Prosthetics, Inc.	
TEST DATE:	January 6, 1993	TEST ID\#: C37401
SUBJECTS/SAMPLES:	$10 / 10$	NRR (per EPA-1979): 27.1
BAND FORCE (N):	NA	POSITION: NA

FITTING PROCEDURE: EPA/Experimenter Fit

Test Frequency (Hz)	Mean Attenuation (dB)	Standard Deviation (dB)
125	34.1	5.9
250	33.9	5.4
500	35.4	4.7
1000	32.8	2.8
2000	36.4	3.9
3150	44.6	3.5
4000	45.1	3.7
6300	46.4	4.1
8000	46.9	4.7

Performed by: Ronald W. Fugee Reviewed by: Sr. Acoustical Technician
 Manager, Acoustical Engineering

Test ID: C37401 Device: Insta-Mold Customized Ear Protectors
Date: 1/5/93 Samples: 10 Position: NA Comfort:
3.8

Comments: Tested with Tasco Ultimuff [158602]. TLS retest data. Impressions, made using syringe and foam dam, extending past the first bend, but not past second bend.
Two coats of Insta-Seal Plus applied prior to testing.

Subj.	Trial	125	250	500	$\begin{aligned} & 1 / 30 \\ & 1000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ctave-E } \\ & 2000 \end{aligned}$	$\begin{aligned} & 3 \text { and } F \\ & 3150 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { requen } \\ & 4000 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Cy } \\ & 6300 \end{aligned}$	8000	125	Comf.	Canal Size	NRR*
DVF	1	34	37	41	33	33	44	48	52	50	37		S/S	29.4
	2	31	33	36	32	32	41	43	51	43	28			
	3	29	28	34	31	35	45	46	49	47	26	4		
KAF	1	24	28	29	32	30	42	45	44	40	22		MM+	25.6
	2	20	23	29	28	33	42	46	41	45	17			
	3	25	26	36	33	32	44	44	42	42	24	5		
GWG	1	33	31	37	34	38	42	45	49	49	33		L	$30 . \overline{9}$
	2	36	36	38	32	34	45	45	50	50	36			
	3	38	35	35	31	38	44	41	50	50	36	1		
MG	1	40	35	35	32	36	45	50	49	52	38		MM	30.1
	2	36	35	36	31	39	50	49	46	53	36			
	3.	32	33	34	30	33	46	44	47	52	35	2		
BAK	1	40	36	36	35	45	52	52	50	46	39		XLXL	35.0
	2	42	43	42	36	43	47	46	46	41	41			
	3	44	38	40	36	41	48	49	48	40	43	10		
JRM	1	37	35	36	34	32	42	41	42	43	38		XSNS+	31.5
	2	34	34	35	33	32	40	42	44	43	34			
	3	36	35	33	32	32	43	42	42	42	36	5		
DLP	1	39	38	43	36	42	48	55	53	52	39		L/L+	25.9
	2	32	30	27	31	38	40	44	51	54	32			
	3	33	34	36	36	39	52	48	54	57	38	4		
CRA	1	30	29	31	30	37	42	40	40	44	31		MM	30.1
	2	30	30	32	30	35	42	42	40	44	35			
	3	33	33	32	32	36	41	44	39	40	34	2		
EAS	1	42	45	48	39	43	51	49	48	52	40		MM	33.5
	2	38	42	41	38	37	47	42	44	50	35			
	3	44	46	38	37	38	44	46	46	49	38	3		
TLS	1	29	29	33	31	36	45	44	44	45	33		M/M	27.8
	2	34	32	31	30	34	41	42	45	45	29			
	3	27	29	28	28	39	43	38	47	46	30	2		
$\begin{aligned} & \text { Mean } \\ & \operatorname{sd}(30) \\ & \operatorname{sd}(10) \\ & \text { Q-Value } \end{aligned}$		34.1	33.9	35.4	32.8	36.4	44.6	45.1	46.4	46.9	33.8			
		5.9	5.4	4.7	2.8	3.9	3.5	3.7	4.1	4.7	5.9			
		5.6	5.1	3.7	2.6	3.6	2.6	2.9	4.1	4.5				
		38.4	31.7	29.2	27.1	27.5		36.7		38.9				

NRR $(2 s d)=$
$27.1(1 \mathrm{sd})=\quad 30.9 \quad(0 \mathrm{sd})=$
34.6

NRR* - Individual 2sd NRR

DIXON'S OUTLIER TEST: EXTREME RANGES

Test 1D: C37401 Device: Insta-Mold Customized Ear Protectors

Subl.	1/3 Octave-Band Frequency								
	125	250	500	1000	2000	3150	4000	6300	8000
DVF	5	9	7	2	3	4	5	3	7
KAF	5	5	7	5	3	2	2	3	5
GWG	5	5	3	3	4	3	4	1	1
MG	8	2	2	2	6	5	6	3	1
BAK	4	7	6	1	4	5	6	4	6
JRM	3	1	3	2	0	3	1	2	1
DLP	7	8	16	5	4	12	11	3	5
CRR	3	4	1	2	2	1	4	1	4
EAS	6	4	10	2	6	7	7	4	3
TLS	7	3	5	3	5	4	6	3	1
Mean	5.3	4.8	6.0	2.7	3.7	4.6	5.2	2.7	3.4
Max.	8	9	16	5	6	12	11	4	7
1	0.200	0.143	0.429	0.000	0.000	0.500	0.444	0.000	0.167

Extreme value rejected if $\mathrm{r}>0,477$. One-sided test of significance at $\mathrm{p}<0.05$.
Rejected values are shaded.

DIXON'S OUTLIER TEST: EXTREME MEANS

Test ID: C37401 Device: Insta-Mold Customized Ear Protectors

Subj.	1/3 Octave-Band Frequency								
	125	250	500	1000	2000	3150	4000	6300	8000
DVF	31.3	32.7	37.0	32.0	33.3	43.3	45.7	50.7	46.7
KAF	23.0	25.7	31.3	31.0	31.7	42.7	45.0	42.3	42.3
GWG	35.7	34.0	36.7	32.3	36.7	43.7	43.7	49.7	49.7
MG	36.0	34.3	35.0	31.0	36.0	47.0	47.7	47.3	52.3
BAK	42.0	39.0	39.3	35.7	43.0	49.0	49.0	48.0	42.3
JRM	35.7	34.7	34.7	33.0	32.0	41.7	41.7	42.7	42.7
DLP	34.7	34.0	35.3	34.3	39.7	46.7	49.0	52.7	54.3
CRR	31.0	30.7	31.7	30.7	36.0	41.7	42.0	39.7	42.7
EAS	41.3	44.3	42.3	38.0	39.3	47.3	45.7	46.0	50.3
TLS	30.0	30.0	30.7	29.7	36.3	43.0	41.3	45.3	45.3
Mean	34.1	33.9	35.4	32.8	36.4	44.6	45.1	46.4	46.9
Min.	23.0	25.7	30.7	29.7	31.7	41.7	41.3	39.7	42.3
Max.	42.0	44.3	42.3	38.0	43.0	49.0	49.0	52.7	54.3
Low r	0.382	0.325	0.077	0.167	0.042	0.000	0.043	0.242	0.000
High r	0.056	0.372	0.273	0.318	0.303	0.227	0.000	0.194	0.167

Extreme value rejected if $r>0.551$. Two-sided test of significance at $p<0.05$.
Rejected values are shaded.

Calculation of the Noise Reduction Rating (NRR)*

Test ID: C37401 Device: Insta-Mokd Customized Ear Protectors

1/3 Octave Band Center Frequency (Hz)	125	250	500	1000	2000	4000	8000	
7. Assumed pink noise	100	100	100	100	100	100	100	
2. C-weighting values	-0.2	0.0	0.0	0.0	-0.2	-0.8	-3.0.	
3. Unprotected C-weighted levels (step $1+$ step 2)	99.8	100	100	100	99.8	99.2	97.0	$107.95 \mathrm{dBC}^{*+*}$
4. A-weighting values	-16.1	-8.6	-3.2	0.0	12	1.0	-1.1	
5. Unprotected A-weighted levels (step $1+$ step 4)	83.9	91.4	96.8	100.0	1012	101.0	98.9	
6. Mean attenuation at frequency**	34.1	33.9	35.4	328	36.4	44.8	46.7	
7. Standard deviation at frequency ($x 2$) **	11.8	10.8	9.4	5.6	7.7	7.2	8.8	
8. Protected A-weighted sound levels $(\operatorname{step} 5-\operatorname{step} 6+\operatorname{step} 77$	61.6	68.3	70.8	72.9	72.5	63,3	61.1	77.85 dBA***
9. $N R R=($ step $3 \log$ sum $)$ NRR =	$\begin{array}{r} \text { tep } 8 \text { lo! } \\ 27.1 \end{array}$	sum) -	B corre	on factor				

*Computations per EPA (1979). Computations are done with 15 significant digits in the computer. It NRR is computed from rounded values in rows 6 and 7 of this table, errors of up to 0.1 dB may occur. All values in dB .
** $4000-\mathrm{Hz}$ values are mean of 3150 Hz and 4000 Hz data. $8000-\mathrm{Hz}$ values are mean of 6300 Hz and 8000 Hz data.
*** Logarithmic sum. All logantihns to base 10.
${ }^{* * * *}$ Values shown to 0.1 dB . However, labeled NRRs are to be rounded to integer values, with values ending in 0.5 rounded to the next lower whole number.

Age, Gender, and Anatomical Data for Test Subjects

Test ID: C37401 Device: Insta-Mold Customized Ear Protectors

Subiects	Sex	Canal Size		Age	Bitragus Breadth	Head Height	A. Ear Breadth	R. Ear Lenath	A. Pinna Protr.
		L	R						
DVF	F	S	S	43	136	126	32	62	19
KAF	F	M	M +	38	135	141	27	52	23
GWG	M	L	L	37	144	132	31	63	23
MG	F	M	M	30	136	118	31	61	23
BAK	M	XL	XL.	42	150	143	39	68	20
JRM	M	XS	XS+	37	141	133	35	64	23
DLP	M	L	L+	27	145	149	34	68	26
CRR	M	M	M	20	132	146	29	60	26
EAS	M	M	M	22	148	146	39	71	22
TLS	F	M	M	31	132	130	31	65	23
	4-F	Mean		32.7	139.9	136.4	32.8	63.4	22.8
	6-M	Std. Dev.		8.0	6.6	10.1	4.0	5.3	2.2

Age in years. Dimensions in millimeters.
Subjects for this test were selected from the E-A-RCAL Laboratory panel of experienced listeners so as to obtain a $50 / 50(+/-10 \%)$ gender balance.
A subject's availability was a factor in the selection process.

[^0]: * This report, which pertains only to the samples and subjects tested, cannot be used to claim product endorsement by NVLAP, or any other agency of the U. S. Govemment

